中国糖尿病杂志

期刊简介

《中国糖尿病杂志》介绍 《中国糖尿病杂志》为1993年创刊,由北京大学主办,教育部主管;2003年改名为《中华糖尿病杂志》,变更主管为国家科协,主办为中华医学会,国家级的、进入中华医学会所办医学杂志系列;因我国科技期刊体制改革的缘故,本刊的管理与医学会对杂志的管理体系无法匹配,相应的变更手续仍无法进行下去。为此,自2006年《中国糖尿病杂志》暂且退回变更《中华糖尿病杂志》前的情况,以待科技期刊体制的全面改革。退回后的《中国糖尿病杂志》(《中华糖尿病杂志》)仍是我国糖尿病专业唯一的高级学术期刊,是国家科技部中国科技论文统计源期刊,也是医学类中文核心期刊,其他指标也同样不变。 《中国糖尿病杂志》(《中华糖尿病杂志》)为月刊,以从事糖尿病临床和基础方面工作的医、教、研及糖尿病并发症的相关专业的各级医务人员为读者对象,以报道糖尿病专业及相关领域临床治疗和基础研究最新成果为题,并相应介绍国外该领域的最新研究进展。所刊文章强调其科学性和先进性,特别注重临床论著上的实用性和可读性,及对有关医务人员的参考价值,并在报道最新基础研究的同时,指导更新的研究方向。主要栏目设置有:临床经验总结、实验研究论著、短篇报道、文献综述、讲座、临床病理(例)讨论、病理报告、专题讨论、国内外研究新进展、学术活动通知、学术会议纪要、新医新药研究、科研最新动态、专业书刊评价及消息等。随着我国经济发展,糖尿病患病率迅速上升,糖尿病与心血管病和肿瘤已成为威胁人民健康的三大慢性病,因此本刊已成为医药卫生界不可缺少的参考读物和临床医生的必备期刊;随着网络科技的发展,科技期刊发行量持续下降,本刊以其实用性、指导性、大信息量和灵活的办刊方式等特点,在相关专业持续保持着极高的影响力,科技部情报所发布的最新统计显示,本刊的影响因子高达1.283,在科技期刊内科学类里排名第二,发行量一直保持在2万余册,为科技类期刊中的较高水平。 刊号:ISSN1006-6187/CN11-5449/R,邮发代号:82-623。

统计学在医学论文写作中的应用及常用统计方法与软件

时间:2024-04-19 09:59:03

统计学在医学论文的写作过程中发挥着举足轻重的作用。通过详尽的搜索、系统的整理、深入的分析以及精准的描述数据,我们可以推断出被测量对象的内在本质,甚至对其未来发展趋势进行科学的预测。这一过程中,不仅涉及到了大量的数学知识,还涵盖了多个学科领域的专业理论,其应用范围之广,几乎触及了社会科学和自然科学的每一个角落。接下来,我们就来详细探讨一下在撰写医学论文时,常常会用到的几种统计学应用方法。


统计学在医学论文写作中的应用及常用统计方法与软件



在医学研究中,统计分析方法的运用是至关重要的。其中,t检验是一种常用的方法,它包括了单样本t检验、配对样本t检验(也被称为成对样本t检验)以及两独立样本t检验(或称为成组t检验),而在实际应用中,以后两种t检验的使用最为普遍。


此外,方差分析也是医学研究中不可或缺的一种统计方法。它主要包括完全随机设计的方差分析和随机区组设计的方差分析两种类型。在进行多重比较时,LSD-t检验是两两比较中常用的一种手段。


χ2检验在医学研究中同样占据着一席之地。这种方法涵盖了独立样本四格表χ2检验、配对四格表χ2检验、Fisher确切概率法以及行×列表资料的χ2检验等多种形式。


除了上述方法外,非参数检验也是一种重要的统计分析手段。它包括了配对样本比较的Wilcoxon符号秩检验、两个独立样本比较的Wilcoxon秩和检验、完全随机设计多个样本比较的Kruskal-Wallis H检验以及随机区组设计多个样本比较的Friedman M检验等多种方法。


回归分析在医学研究中同样具有重要地位,其中线性回归和logistic回归是最为常用的两种形式。


在选择统计方法时,我们需要考虑多个因素。首先是流行病学方面,包括横断面研究、病例对照研究(由结果探寻原因)、队列研究(由原因推导结果)以及随机对照试验等。其次,我们的分析目的也是选择统计方法的关键,例如描述、比较、探寻相关性或进行回归分析等。同时,我们还需要考虑变量的分组情况,是单因素还是多因素,以及单因素中是涉及两组还是多组数据。此外,设计方案也是一个重要的考量因素,如是否采用完全随机、配对或配伍、重复测量、是否存在交互作用以及是否需要进行生存分析等。最后,我们还需要根据资料的类型(如计量资料、计数资料、等级资料或生存时间等)和数据特征(如正态性、方差齐性、独立性、样本量大小以及线性关系等)来综合选择最合适的统计方法。


以下是一些具体的应用举例:


一、假设我们进行了一项随机对照试验,目的是比较针刺组和温针组在治疗前后颈痛量表(NPQ)的评分变化。考虑到数据特征包括正态性、方差齐性以及非独立性(因为同一对象不同时刻的测量值之间存在相关性),我们可以选择重复测量的方差分析或混合模型来进行统计分析。


二、在另一项随机对照试验中,我们旨在比较西格列汀联合甘精胰岛素与单纯甘精胰岛素在治疗早期糖尿病肾病方面的效果。由于资料特征为计数资料和等级资料,且样本量适中,因此我们可以选择卡方检验或秩和检验来进行统计分析。


三、再举一个例子,我们进行了一项随机对照试验,目的是比较观察组和对照组在各种并发症发生率上的差异。考虑到并发症之间并非完全独立(例如发生导管堵塞的患者也可能发生穿刺点感染),我们应该对每种并发症的发生率分别进行卡方检验,而不是采用2×6列联表的卡方检验。


四、最后举一个关于相关性的例子。我们想要探讨皮肤真菌病程与疗效之间的相关性,即病程越长疗效是否越差。由于资料特征为双相有序且属性不同的二维列联表,因此我们可以选择Spearman秩相关分析来进行统计推断。同时,如果我们想要比较不同病程的患者在疗效上的差异是否具有统计学意义,那么可以采用秩和检验来进行统计分析。


在进行统计分析时,我们通常会借助一些专业的统计软件来提高效率和准确性。其中SAS适用于大数据分析;SPSS则以其直观的图形界面和易上手的特点而受到广泛欢迎;Stata常用于Meta分析;而Python和R则分别由计算机专家和统计学家开发,具有强大的数据可视化和统计分析功能,能够绘制各种美观新颖的图表并应用最新的统计学方法。